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1

Slater [1] proved the following companion to Jensen's inequality for
convex functions:

Suppose that f is convex and nondecreasing (nonincreasing) on (a, b).
Then for XI"'"XnE(a, b), PI>...,Pn~O, Pn=PI+'" +Pn>O, and
pd~(xI)+ '" + Pnf~(xn)-:fO, we have

(1)

An integral analog of this result is also valid. Both results remain true if
at any occurrence of f~ (x) we write instead any value in the interval
[f'- (x), f~ (x)].

The following simple generalization of this result was given in [2]:
Suppose that f is a convex function on (a, b). If for Xl>"" X n E (a, b),

PI"'" Pn ~O, and pd~(xd+ ... + Pnf~(xn) ,,60, we have

then (1) is valid.
Note that a similar companion inequality to Jensen-StefTensen's

inequality was also given in [2]. Some other inequalities, complementary
to Jensen's inequality for convex functions, are given in [3 and 4] (see also
[5 and 6]).
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(2)

All these results hold for convex functions of one variable. However, we
shall show that a generalization of Slater's inequality to convex functions of
several variables is also valid.

2

If x,YERm, say, x=(XI>""xm), Y=(YI, ...,Ym), then (x,y)=
x I YI + ... +XmYm' We shall say that a real function f is convex on an
open set I (/£Rm

) if the following inequality holds:f(A.x+(1-A)y)~

)f(x) +(1- A)f(y), "Ix, Y E I and VA E [0, 1].

THEOREM. Let f: I -+ R (I £; R m) be a convex function, and let

XI'"'' XnE I, PI,"', Pn ~ 0, Pn> 0. If A E I exists such that

\ A, k~1 Pd~(Xd)~ k~1 Pk(Xb f~(xd),

where f~ (x) = (f~ + (x ),..., f'm + (x)) and f~ + ,..., f'm + are right partial
derivatives off, then

1 n

p L pJ(xi)~f(A).
n i= 1

Proof If f is convex on I, then

i.e.,

(3)

for k = 1,..., n.
Multiply the kth inequality by Pk and add the inequalities thus obtained;

we obtain

since (2) holds.

COROLLARY. Let f, XI = (xu, ..·, x lm ), .. ·, Xn= (xnl>'''' x nm )' PI"'" Pn
satisfy the conditions of the theorem. If f is also nondecreasing (nonin-
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creasing) in each of its m variables and if pJ!J+(xd+ ... PnfJ+(xn):f.O
(j = 1,..., m), then (3) is valid if

A = (A b ... , Am)

=(Lk=l PkXkl(~+(xd,..., Lk=l PkXkm!'m+(Xk»).
Lk~l Pkfl+(Xk) Lk=l Pkfm+(xk)

Proof Observe that A E I since A j is a convex combination of
x Ij"'" x mj . Since

m n m n

= L Aj L PkfJ+(Xk) = L L PkXkJJ+ (Xk)
j~l k=l j=lk=l

n m n

= L Pk L xkjfJ+(Xk) = L Pk<Xk, f~(xd>,
k~l j=l k~J

the theorem implies the corollary.

Remark. One can prove the integral analogs of the above results (i.e.,
generalizations of inequality (4) of [1]).
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